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Hybrid Systems

Thermostat:

onoff

x ≤ 18

x ≥ 22

ẋ = −x ẋ = −x + 40

0 ≤ x ≤ 30

x

t

Dynamical system with both continuous and discrete state and
evolution.

Also continuous state can jump discontinuously (state updates)

Non-linearity (differential equations, updates)

In illustrations: systems with just one control mode.

Motivation: embedded systems, motor gears, . . .
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System Correctness

Error trajectory: trajectory from initial to unsafe state

Init

Unsafe

y

x

System is correct (safe) if it does not contain an error trajectory
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Problem Definition

Observation:

I for ordinary differential equations forward reachability
computation (as used in most verification algorithms) only
with over-approximation.

I So: from this, no (systematic) detection of error trajectories

So: design algorithm to detect incorrectness (falsification
algorithm)
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Illustration of the Problem

Assumptions:

I deterministic evolution: for a given initial state, unique
trajectory

I bounded state space
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Unsafe

y

x

So, problem: finding a startpoint of an error trajectory.
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Computing trajectories

simulation
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Näıve Method

starting points of simulations
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What to Do about the Näıve Method?

Näıve because:

I It runs forever on safe systems.

I It runs simulations evenly distributed on the whole statespace.

I Each individual simulation runs for a pre-determined amount
of time.

Therefore we will . . .

I . . . alternate verification and falsification cycles;

I . . . prefer the more promising simulations;

I . . . cancel simulations when they do not look promising
anymore.
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HSolver Abstraction

Verification tool: HSolver
(http://hsolver.sourceforge.net/)

I The statespace is
partitioned into finitely
many boxes.

I Interval arithmetic is
used to compute the
abstract transitions.

I Overapproximation used
for verification.
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I If necessary, the abstraction is refined by splitting a box.

I State space pruning
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Our Method: Main Idea

x

Use real-valued quality estimate to approximate ”given point is
close to an initial point of an error trajectory”.

Optimise the quality estimate.

I How to define this function?

I How to find the optimum?
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Defining the Quality Estimate

Overall approach:

I Start a simulation

I Compute closeness to error trajectory on the fly

I Cancel if no new information gained

Problems: a-priori, length of error trajectories unbounded, and

I the longer we simulate, the more information about quality,
but simulation costs

I a simulation that looks bad at the beginning, might turn out
good much later

Solution: Use information from abstraction, s.t. fine enough
abstraction will result in reliable quality estimate
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Closeness to Error Trajectory

A simulation is close to an error trajectory iff

I its first point is initial

I it stays inside of abstraction as much as possible

I it gets close to unsafe state

Note: leaving abstraction means ”no error trajectory”

But: there might still be an error trajectory nearby
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Closeness to Unsafe State

Maximal closeness of any individual simulation point

This is not
Euclidean closeness

Measure closeness using
abstraction
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Cancellation Strategy

Goal: Cancel if no interesting new information gained

Problem: based on future (when new information might be gained)

Cancel if

I unsafe state hit,

I outside of abstraction for too long, or

I no improvement of quality for too long.

”too long”: parameter sim cnc

Observation: last two items improve with abstraction

Hope: abstraction eventually good enough for reliable strategy
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Optimising the Quality Estimate

From boxes that might contain initial states,
start numerical local optimisation.

Numerical optimisation usually needs derivatives.

Not available! direct search methods

Compass method
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Experiments

our algorithm näıve algorithm

Example sim cnc time ref. sim. time sim.

convoi 200 0.04 0 1 ∞ ∞
eco 400 0.1 0 1 0.1 1
eco 200 2.1 10 63 0.1 1

focus 200 0.1 0 10 0.04 1
focus 20 29.7 434 288 0.04 1

parabola 105 0.0 0 1 ∞ ∞
parabola 30 18.0 353 113 ∞ ∞
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Jumps

I For simplicity, we did not explain here how the quality
estimate is defined in the presence of jumps.

I Our current implementation did find error trajectories with up
to 2 (necessary) jumps.

I Encouraging first result, but topic for future work.
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Conclusion

Main Observations:

I Local search can help to find error trajectories.

I Even for too small value of sim cnc , simulations will eventually
“survive” long enough thanks to the refinement of the
abstraction and improving faithfulness of the quality function.

Future work:

I More mathematical intelligence (e.g., derivatives)

I Reasoning forward and backward

I Non-deterministic evolution
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