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based on SAT
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scope enumeration

for each scope:
convert  A ∧ ¬ P  to Kodkod

main issues:
speed and precision

numbers,
datatypes,

ind. predicates,
rec. functions

scope = dom. size spec.

Nitpick in a nutshell
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Non-uniform encoding

• n-ary functions are coded as (n + 1)-ary relations

• but:  n-ary predicates
       ➙  n-ary relations (sets of n-tuples)

• but:  functions in higher-order constructs
       ➙  vectors of values

• λ-abstractions  ➙  set comprehensions
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Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

• unrep./unknown value:  ⊥

• ∀n::nat.  P(n)  ➙  (∀n ≤ K.  P(n)) ∧ P(⊥)

• Kleene logic

• potential counterexamples
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Inductive datatypes

• are approximated by subterm-closed 
universes

• user can specify maxima on ctors

• recursive functions: defined by their eq. spec.
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Inductive predicates

• specified by introduction rules

• correspond to a lfp

• well-founded?

• if yes, lfp = gfp

• otherwise, unroll

lexicographic_order
sizechange{
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Function specialization

map f [] = []

map f (x ⋅ xs) = f x ⋅ map f xs
map (λn. n + 2) ks

map' [] = []

map' (x ⋅ xs) = (x + 2) ⋅ map' xs map' ks



3 Evaluation
To assess Nitpick, we used a database of mutated formulas consisting mostly of non-
theorems, as was done for Quickcheck [1]. Figure 1 summarizes the results of running
Nitpick, Refute, and Quickcheck on 3 000 formulas derived from three theories: List
is the standard theory of lists, AVL is a theory of AVL trees, and POPLmark is a for-
malization of System F<:. Many of the formulas were not executable, in which case
Quickcheck was not applicable. Refute’s three-valued logic is unsound, so all counter-
examples for formulas that involve an infinite type are potentially spurious. In contrast,
Nitpick fared well on all kinds of formulas.

Fig. 1. Success rates of the counterexample generators on three theories

4 Conclusion and Future Work
Thanks to Kodkod and a nonuniform encoding scheme, Nitpick generates more counter-
examples than similar tools, without restrictions on the form of the formulas. This
means that Isabelle users can avoid a lot of wasted time spent trying to prove non-
theorems. In addition, using Isabelle and Nitpick together provides a viable higher-
order alternative to Alloy. Future work includes looking for encodings that would make
it possible to handle much larger states, which arise when formalizing programming
language semantics, and finding ways to rule out certain domain sizes through static
analysis of the formula.
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