Nitpick:
A counterexample generator
for higher-order logic
based on a relational model finder

Jasmin Blanchette & Tobias Nipkow
TU Munchen

Isabelle/HOL

small-kernel interactive theorem prover
for higher-order logic

Isabelle/HOL

small-kernel interactive theorem prover
for higher-order logic

Quickcheck
random generation of variable assignments

+ fast — requires exec.

Isabelle/HOL

small-kernel interactive theorem prover
for higher-order logic

Quickcheck
random generation of variable assignments
+ fast — requires exec.
Refute

finite model finding using SAT

+ general — slow

Nitpick
finite model finding using Kodkod

+ general — slow

Nitpick
finite model finding using Kodkod

+ general - slow

Kodkod
finite model finder for FOL w/ relational calc.

based on SAT
backend of the Alloy Analyzer

Nitpick

Kodkod

SAT Solver

Nitpick

Kodkod

SAT Solver

Nitpick

Kodkod

SAT Solver

Nitpick

Kodkod

SAT Solver

) Standard ML

. Java
{0 cicH+

Nitpick

Kodkod

SAT Solver

. TU Munchen

Nitpick in a nutshell

Nitpick in a nutshell

scope enumeration

Nitpick in a nutshell

scope enumeration

scope = dom. size spec.

Nitpick in a nutshell

scope enumeration

scope = dom. size spec.

for each scope:
convert A A 7P to Kodkod

Nitpick in a nutshell

scope enumeration main issues:
speed and precision

scope = dom. size spec.

for each scope:
convert A A 7P to Kodkod

Nitpick in a nutshell

scope enumeration main issues:
speed and precision

scope = dom. size spec. numbers,
datatypes,

ind. predicates,

for each scope: rec. functions

convert A A 7P to Kodkod

Non-uniform encoding

Non-uniform encoding

® n-ary functions are coded as (n + |)-ary relations

Non-uniform encoding

® n-ary functions are coded as (n + |)-ary relations

® but: n-ary predicates
=—> n-ary relations (sets of n-tuples)

Non-uniform encoding

® n-ary functions are coded as (n + |)-ary relations

® but: n-ary predicates
=—> n-ary relations (sets of n-tuples)

® but: functions in higher-order constructs
—> vectors of values

Non-uniform encoding

n-ary functions are coded as (n + |)-ary relations

but: n-ary predicates
=—> n-ary relations (sets of n-tuples)

but: functions in higher-order constructs
—> vectors of values

A-abstractions => set comprehensions

Infinite types

Infinite types

® are approximated by finite fragment;
e.g.,{0,1,2,...,K}

Infinite types

® are approximated by finite fragment;
e.g.,{0,1,2,...,K}

® unrep./unknown value: L

Infinite types

® are approximated by finite fragment;
e.g.,{0,1,2,...,K}

® unrep./unknown value: L

e vn:nat. P(n) = (vn<K.P(n)) A P(L)

Infinite types

are approximated by finite fragment;
e.g.,{0,1,2,...,K}

unrep./unknown value: L

vn:nat. P(n) = (vn<K.P(n)) A P(L)

Kleene logic

Infinite types

are approximated by finite fragment;
e.g.,{0,1,2,...,K}

unrep./unknown value: L

vn:nat. P(n) = (vn<K.P(n)) A P(L)
Kleene logic

potential counterexamples

Inductive datatypes

Inductive datatypes

® are approximated by subterm-closed
universes

Inductive datatypes

® are approximated by subterm-closed
universes

® user can specify maxima on ctors

Inductive datatypes

are approximated by subterm-closed
universes

user can specify maxima on ctors

recursive functions: defined by their eq. spec.

Example: o list

scope: |a| =2, |alist| =3

ctors: Nil®list
Cons“ — o list = o list

universes: {[1, [ai], [a2]}

{[l, [a1], [a1, a1]}
{[I [a1], [a2, a1]}
{[1, [a2], [a1, a2]}
{[1, [a2], [a2, a2]}

Example: o list

scope: |a| =2, |alist| =3
ctors: Nil® list
Consa—' o list— o list

universes: {[], [ai], [a2]}

Ul [a1], [a1, @]}
Ul [a1], [a2, @]}

, [a
b/ 2’ 9

Inductive predicates

Inductive predicates

® specified by introduction rules

Inductive predicates

® specified by introduction rules

® correspond to a lfp

Inductive predicates

® specified by introduction rules
® correspond to a lfp

® well-founded!?

Inductive predicates

® specified by introduction rules
® correspond to a lfp
® well-founded!?

® if yes, Ifp = gfp

Inductive predicates

® specified by introduction rules
® correspond to a lfp
® well-founded!?

® if yes, Ifp = gfp

® otherwise, unroll

Inductive predicates

® specified by introduction rules

® correspond to a lfp

e well-founded? { lexicographic_order
sizechange

® if yes, Ifp = gfp

® otherwise, unroll

Example: even

intro. rules: even(0)
even(n) = even(n + 2)

Example: even

intro. rules: even(0)
even(n) = even(n + 2)

fixpoint eq.: even(n) =
(n=0vVv (dm.n=m + 2 A even(m)))

Example: even

intro. rules: even(0)
even(n) = even(n + 2)

fixpoint eq.: even(n) =
(n=0vVv (dm.n=m + 2 A even(m)))

unrolled eq.: eveno(n) = L

eveni+1(n) =
(n=0v (IMm.n=m + 2 A evenk(m)))

Function specialization

map f[] = []

map f (x - xs) = fx - map f xs

Function specialization

map f[] =]

map f(x - xs) = fx - map fxs P (An.n +2) ks

Function specialization

map f[] =]

map f(x - xs) = fx - map fxs P (An.n +2) ks

map' [] = []

maP' (X . XS) = (X + 2) . maP' XS maP' ks

List

AVL

Evaluation

0% 50% 100%

Nitpick NG
Refute Il
Quickcheck NG I

Nitpick NG
Refute M
Quickcheck I I

POPL-

0% 50%
| 1

Nitpick NG
Refute Il

Quickcheck NG

Bl Genuine counterexamples
Potential counterexamples
Bl Not applicable

Fig. 1. Success rates of the counterexample generators on three theories

Status

® first public release two weeks ago
® afew users + TPTP

® found two bugs in TPS prover!

Status

first public release two weeks ago
a few users + TPTP

found two bugs in TPS prover!

Future work

more optimizations (speed and precision)

evaluations

