
Nitpick:
A counterexample generator

for higher-order logic
based on a relational model finder

Jasmin Blanchette & Tobias Nipkow
TU München

Isabelle/HOL
small-kernel interactive theorem prover
for higher-order logic

Isabelle/HOL
small-kernel interactive theorem prover
for higher-order logic

Quickcheck
random generation of variable assignments

+ fast − requires exec.

Isabelle/HOL
small-kernel interactive theorem prover
for higher-order logic

Quickcheck
random generation of variable assignments

+ fast − requires exec.

Refute
finite model finding using SAT

+ general − slow

Nitpick
finite model finding using Kodkod

+ general − slow

Nitpick
finite model finding using Kodkod

+ general − slow

Kodkod
finite model finder for FOL w/ relational calc.
based on SAT
backend of the Alloy Analyzer

NitpickAlloy

Kodkod

SAT Solver

NitpickAlloy

Kodkod

SAT Solver

 HOL

 FOL

 prop. logic

NitpickAlloy

Kodkod

SAT Solver

 HOL

 FOL

 prop. logic

NitpickAlloy

Kodkod

SAT Solver

 Standard ML

 Java

 C/C++

NitpickAlloy

Kodkod

SAT Solver

 TU München

 MIT

 others

Nitpick in a nutshell

scope enumeration

Nitpick in a nutshell

scope enumeration

scope = dom. size spec.

Nitpick in a nutshell

scope enumeration

for each scope:
convert A ∧ ¬ P to Kodkod

scope = dom. size spec.

Nitpick in a nutshell

scope enumeration

for each scope:
convert A ∧ ¬ P to Kodkod

main issues:
speed and precision

scope = dom. size spec.

Nitpick in a nutshell

scope enumeration

for each scope:
convert A ∧ ¬ P to Kodkod

main issues:
speed and precision

numbers,
datatypes,

ind. predicates,
rec. functions

scope = dom. size spec.

Nitpick in a nutshell

Non-uniform encoding

Non-uniform encoding

• n-ary functions are coded as (n + 1)-ary relations

Non-uniform encoding

• n-ary functions are coded as (n + 1)-ary relations

• but: n-ary predicates
 ➙ n-ary relations (sets of n-tuples)

Non-uniform encoding

• n-ary functions are coded as (n + 1)-ary relations

• but: n-ary predicates
 ➙ n-ary relations (sets of n-tuples)

• but: functions in higher-order constructs
 ➙ vectors of values

Non-uniform encoding

• n-ary functions are coded as (n + 1)-ary relations

• but: n-ary predicates
 ➙ n-ary relations (sets of n-tuples)

• but: functions in higher-order constructs
 ➙ vectors of values

• λ-abstractions ➙ set comprehensions

Infinite types

Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

• unrep./unknown value: ⊥

Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

• unrep./unknown value: ⊥

• ∀n::nat. P(n) ➙ (∀n ≤ K. P(n)) ∧ P(⊥)

Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

• unrep./unknown value: ⊥

• ∀n::nat. P(n) ➙ (∀n ≤ K. P(n)) ∧ P(⊥)

• Kleene logic

Infinite types

• are approximated by finite fragment;
e.g., {0, 1, 2, …, K}

• unrep./unknown value: ⊥

• ∀n::nat. P(n) ➙ (∀n ≤ K. P(n)) ∧ P(⊥)

• Kleene logic

• potential counterexamples

Inductive datatypes

Inductive datatypes

• are approximated by subterm-closed
universes

Inductive datatypes

• are approximated by subterm-closed
universes

• user can specify maxima on ctors

Inductive datatypes

• are approximated by subterm-closed
universes

• user can specify maxima on ctors

• recursive functions: defined by their eq. spec.

Example: α list

scope: |α| = 2, |α list| = 3

ctors: Nilα list

 Consα
→

α list

→

α list

universes: {[], [a1], [a2]}
 {[], [a1], [a1, a1]}
 {[], [a1], [a2, a1]}
 {[], [a2], [a1, a2]}
 {[], [a2], [a2, a2]}

Example: α list

scope: |α| = 2, |α list| = 3

ctors: Nilα list

 Consα
→

α list

→

α list

universes: {[], [a1], [a2]}
 {[], [a1], [a1, a1]}
 {[], [a1], [a2, a1]}
 {[], [a2], [a1, a2]}
 {[], [a2], [a2, a2]}

Inductive predicates

Inductive predicates

• specified by introduction rules

Inductive predicates

• specified by introduction rules

• correspond to a lfp

Inductive predicates

• specified by introduction rules

• correspond to a lfp

• well-founded?

Inductive predicates

• specified by introduction rules

• correspond to a lfp

• well-founded?

• if yes, lfp = gfp

Inductive predicates

• specified by introduction rules

• correspond to a lfp

• well-founded?

• if yes, lfp = gfp

• otherwise, unroll

Inductive predicates

• specified by introduction rules

• correspond to a lfp

• well-founded?

• if yes, lfp = gfp

• otherwise, unroll

lexicographic_order
sizechange{

Example: even

intro. rules: even(0)
 even(n) ⇒ even(n + 2)

fixpoint eq.: even(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ even(m)))

unrolled eq.: even0(n) = ⊥
 evenk+1(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ evenk(m)))

Example: even

intro. rules: even(0)
 even(n) ⇒ even(n + 2)

fixpoint eq.: even(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ even(m)))

unrolled eq.: even0(n) = ⊥
 evenk+1(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ evenk(m)))

Example: even

intro. rules: even(0)
 even(n) ⇒ even(n + 2)

fixpoint eq.: even(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ even(m)))

unrolled eq.: even0(n) = ⊥
 evenk+1(n) =
 (n = 0 ∨ (∃m. n = m + 2 ∧ evenk(m)))

Function specialization

map f [] = []

map f (x ⋅ xs) = f x ⋅ map f xs

Function specialization

map f [] = []

map f (x ⋅ xs) = f x ⋅ map f xs
map (λn. n + 2) ks

Function specialization

map f [] = []

map f (x ⋅ xs) = f x ⋅ map f xs
map (λn. n + 2) ks

map' [] = []

map' (x ⋅ xs) = (x + 2) ⋅ map' xs map' ks

3 Evaluation
To assess Nitpick, we used a database of mutated formulas consisting mostly of non-
theorems, as was done for Quickcheck [1]. Figure 1 summarizes the results of running
Nitpick, Refute, and Quickcheck on 3 000 formulas derived from three theories: List
is the standard theory of lists, AVL is a theory of AVL trees, and POPLmark is a for-
malization of System F<:. Many of the formulas were not executable, in which case
Quickcheck was not applicable. Refute’s three-valued logic is unsound, so all counter-
examples for formulas that involve an infinite type are potentially spurious. In contrast,
Nitpick fared well on all kinds of formulas.

Fig. 1. Success rates of the counterexample generators on three theories

4 Conclusion and Future Work
Thanks to Kodkod and a nonuniform encoding scheme, Nitpick generates more counter-
examples than similar tools, without restrictions on the form of the formulas. This
means that Isabelle users can avoid a lot of wasted time spent trying to prove non-
theorems. In addition, using Isabelle and Nitpick together provides a viable higher-
order alternative to Alloy. Future work includes looking for encodings that would make
it possible to handle much larger states, which arise when formalizing programming
language semantics, and finding ways to rule out certain domain sizes through static
analysis of the formula.

References
1. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.)

SEFM 2004, pp. 230–239. IEEE C.S. (2004)
2. Biere, A., Cimatti, A., Clarke, E. M., Zhu, Y.: Symbolic model checking without BDDs. In:

Cleaveland, R. (ed.) TACAS 1999, LNCS vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
3. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H. (ed.) Proc.

ESEC/FSE 2005, pp. 207–216 (2005)
4. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)

TACAS 2007, LNCS vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
5. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept.

of Informatics, T. U. München (2008)
6. Software: Nitpick. http://isabelle.in.tum.de/~blanchet/#nitpick

Evaluation

Status
• first public release two weeks ago

• a few users + TPTP

• found two bugs in TPS prover!

Status

• more optimizations (speed and precision)

• evaluations

Future work

• first public release two weeks ago

• a few users + TPTP

• found two bugs in TPS prover!

