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Kodkod
finite model finder for FOL w/ relational calc.

based on SAT
backend of the Alloy Analyzer
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Nitpick in a nutshell

scope enumeration main issues:
speed and precision

scope = dom. size spec. numbers,
datatypes,

ind. predicates,

for each scope: rec. functions

convert A A 7P to Kodkod
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Non-uniform encoding

n-ary functions are coded as (n + |)-ary relations

but: n-ary predicates
=—> n-ary relations (sets of n-tuples)

but: functions in higher-order constructs
—> vectors of values

A-abstractions => set comprehensions
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Infinite types

are approximated by finite fragment;
e.g.,{0,1,2,...,K}

unrep./unknown value: L

vn:nat. P(n) = (vn<K.P(n)) A P(L)
Kleene logic

potential counterexamples



Inductive datatypes



Inductive datatypes

® are approximated by subterm-closed
universes



Inductive datatypes

® are approximated by subterm-closed
universes

® user can specify maxima on ctors



Inductive datatypes

are approximated by subterm-closed
universes

user can specify maxima on ctors

recursive functions: defined by their eq. spec.



Example: o list

scope: |a| =2, |alist| =3

ctors: Nil®list
Cons“ — o list = o list

universes: {[1, [ai], [a2]}

{[l, [a1], [a1, a1]}
{[I [a1], [a2, a1]}
{[1, [a2], [a1, a2]}
{[1, [a2], [a2, a2]}




Example: o list

scope: |a| =2, |alist| =3
ctors: Nil® list
Consa—' o list— o list

universes: {[], [ai], [a2]}

Ul [a1], [a1, @]}
Ul [a1], [a2, @]}

, [a
b/ 2’ 9
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Inductive predicates

® specified by introduction rules

® correspond to a lfp

e well-founded? { lexicographic_order
sizechange

® if yes, Ifp = gfp

® otherwise, unroll
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Example: even

intro. rules: even(0)
even(n) = even(n + 2)

fixpoint eq.: even(n) =
(n=0vVv (dm.n=m + 2 A even(m)))

unrolled eq.: eveno(n) = L

eveni+1(n) =
(n=0v (IMm.n=m + 2 A evenk(m)))
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Function specialization

map f[] = ]

map f(x - xs) = fx - map fxs P (An.n +2) ks

map' [] = []

maP' (X . XS) = (X + 2) . maP' XS maP' ks



List

AVL

Evaluation

0% 50% 100%

Nitpick NG
Refute Il
Quickcheck NG I

Nitpick NG
Refute M
Quickcheck I I

POPL-

0% 50%
| 1

Nitpick NG
Refute Il

Quickcheck NG

Bl Genuine counterexamples
Potential counterexamples
Bl Not applicable

Fig. 1. Success rates of the counterexample generators on three theories
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first public release two weeks ago
a few users + TPTP

found two bugs in TPS prover!

Future work

more optimizations (speed and precision)

evaluations



