Nitpick: A counterexample generator for higher-order logic based on a relational model finder

J<u>asmin Blanchette</u> & Tobias Nipkow TU München

Isabelle/HOL

small-kernel interactive theorem prover for higher-order logic

Isabelle/HOL

small-kernel interactive theorem prover for higher-order logic

Quickcheck

random generation of variable assignments + fast - requires exec.

Isabelle/HOL

small-kernel interactive theorem prover for higher-order logic

Quickcheck

random generation of variable assignments + fast - requires exec.

Refute

finite model finding using SAT + general - slow

Nitpick finite model finding using Kodkod + general – slow

Nitpick

finite model finding using Kodkod + general – slow

Kodkod

finite model finder for FOL w/ relational calc. based on SAT backend of the Alloy Analyzer

scope enumeration

scope enumeration

scope = dom. size spec.

scope enumeration

scope = dom. size spec.

for each scope: convert $A \land \neg P$ to Kodkod

scope enumeration

main issues: speed and precision

scope = dom. size spec.

for each scope: convert $A \land \neg P$ to Kodkod

scope enumeration

main issues: speed and precision

scope = dom. size spec.

numbers, datatypes, ind. predicates, rec. functions

for each scope: convert $A \land \neg P$ to Kodkod

• *n*-ary functions are coded as (n + 1)-ary relations

- *n*-ary functions are coded as (n + 1)-ary relations
- but: n-ary predicates
 m-ary relations (sets of *n*-tuples)

- *n*-ary functions are coded as (n + 1)-ary relations
- but: n-ary predicates
 → n-ary relations (sets of n-tuples)
- but: functions in higher-order constructs
 vectors of values

- *n*-ary functions are coded as (n + 1)-ary relations
- but: n-ary predicates
 → n-ary relations (sets of n-tuples)
- but: functions in higher-order constructs
 vectors of values
- λ -abstractions \rightarrow set comprehensions

are approximated by finite fragment;
 e.g., {0, 1, 2, ..., K}

- are approximated by finite fragment;
 e.g., {0, 1, 2, ..., K}
- unrep./unknown value: \perp

- are approximated by finite fragment;
 e.g., {0, 1, 2, ..., K}
- unrep./unknown value: \perp
- $\forall n::nat. P(n) \rightarrow (\forall n \leq K. P(n)) \land P(\bot)$

- are approximated by finite fragment;
 e.g., {0, 1, 2, ..., K}
- unrep./unknown value: \perp
- $\forall n::nat. P(n) \rightarrow (\forall n \leq K. P(n)) \land P(\bot)$
- Kleene logic

- are approximated by finite fragment;
 e.g., {0, 1, 2, ..., K}
- unrep./unknown value: \perp
- $\forall n::nat. P(n) \rightarrow (\forall n \leq K. P(n)) \land P(\bot)$
- Kleene logic
- potential counterexamples

are approximated by subterm-closed universes

- are approximated by subterm-closed universes
- user can specify maxima on ctors

- are approximated by subterm-closed universes
- user can specify maxima on ctors
- recursive functions: defined by their eq. spec.

Example: a list

scope: $|\alpha| = 2$, $|\alpha|$ list |= 3ctors: $Nil^{\alpha list}$ $Cons^{\alpha \rightarrow \alpha} list \rightarrow \alpha list$ universes: $\{[], [a_1], [a_2]\}$ $\{[], [a_1], [a_1, a_1]\}$ $\{[], [a_1], [a_2, a_1]\}$ $\{[], [a_2], [a_1, a_2]\}$ $\{[], [a_2], [a_2, a_2]\}$

Example: a list

scope: $|\alpha| = 2$, $|\alpha|$ list $|\alpha| = 3$ ctors: $Nil^{\alpha list}$ $Cons^{\alpha \rightarrow \alpha} list \rightarrow \alpha list$ universes: $\{[], [a_1], [a_2]\}$ $\{[], [a_1], [a_1, a_1]\}$ $\{[], [a_1], [a_2, a_1]\}$ $\{[], [a_2], [a_1, a_2]\}$ $\{[1, [a_2], [a_2, a_2]\}$

• specified by introduction rules

- specified by introduction rules
- correspond to a lfp

- specified by introduction rules
- correspond to a lfp
- well-founded?

- specified by introduction rules
- correspond to a lfp
- well-founded?
 - if yes, lfp = gfp

- specified by introduction rules
- correspond to a lfp
- well-founded?
 - if yes, lfp = gfp
 - otherwise, unroll

- specified by introduction rules
- correspond to a lfp
- well-founded?

lexicographic_order sizechange

- if yes, lfp = gfp
- otherwise, unroll

Example: even

intro. rules:
$$even(0)$$

 $even(n) \Rightarrow even(n + 2)$

unrolled eq.:
$$even_0(n) = \bot$$

 $even_{k+1}(n) =$
 $(n = 0 \lor (\exists m. n = m + 2 \land even_k(m)))$

Example: even

intro. rules:
$$even(0)$$

 $even(n) \Rightarrow even(n + 2)$

fixpoint eq.:
$$even(n) =$$

 $(n = 0 \lor (\exists m. n = m + 2 \land even(m)))$

Example: even

intro. rules:
$$even(0)$$

 $even(n) \Rightarrow even(n + 2)$
fixpoint eq.: $even(n) =$
 $(n = 0 \lor (\exists m. n = m + 2 \land even(m)))$
unrolled eq.: $even_0(n) = \bot$
 $even_{k+1}(n) =$
 $(n = 0 \lor (\exists m. n = m + 2 \land even_k(m)))$

Function specialization

 $map \mathbf{f}[] = []$ $map \mathbf{f}(x \cdot xs) = \mathbf{f}x \cdot map \mathbf{f}xs$

Function specialization

 $map \mathbf{f}[] = []$ $map \mathbf{f}(x \cdot xs) = \mathbf{f}x \cdot map \mathbf{f}xs$

map $(\lambda n. n + 2)$ ks

Function specialization

map f [] = [] $map f (x \cdot xs) = f x \cdot map f xs$ map' [] = [] $map' (x \cdot xs) = (x + 2) \cdot map' xs$ map' ks

Evaluation

Fig. 1. Success rates of the counterexample generators on three theories

Status

- first public release two weeks ago
- a few users + TPTP
- found two bugs in TPS prover!

Status

- first public release two weeks ago
- a few users + TPTP
- found two bugs in TPS prover!

Future work

- more optimizations (speed and precision)
- evaluations